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1. Introduction

The question whether the growth of real economic activity (REA) can be predicted is of

particular importance to policy makers, firms and investors. Monetary and fiscal policy as

well as firms’ business plans and investors’ decisions are based on REA growth forecasts. There

is an extensive literature which studies whether REA growth can be predicted by employing

a number of financial variables (for a review, see Stock and Watson, 2003). This literature

has become even more topical recently when the 2007 turbulence in the financial markets was

followed by a significant economic recession which caught investors and academics by surprise

(Gourinchas and Obstfeld, 2012). These facts highlight the link between financial markets

and the real economy as well as the need to develop new accurate REA predictors based on

financial markets’ information (for a discussion on this, see also Ng and Wright, 2013).

In this paper, we explore whether the cross-section of index option market prices conveys

information for future REA growth. To this end, we propose a new predictor of REA. We

investigate whether the representative investor’s relative risk aversion (RRA) extracted from

the S&P 500 market option prices (implied RRA, IRRA) predicts the growth of U.S. REA. The

motivation for the choice of our predictor stems from the informational content that market

option prices are expected to possess. This is because S&P 500 options are inherently forward-

looking contracts. Their payoff depends on the future state of the economy because the

underlying stock index is a broad one that eliminates idiosyncratic risk. In addition, evidence

suggests that informed traders tend to prefer option markets rather than the underlying spot

market to exploit their informational advantage (e.g., Easley et al., 1998, Pan and Poteshman,

2006, and references therein), thus making option-based measures even more appealing for

forecasting REA.

We extract U.S. IRRA’s time series over July 1998-August 2015 via Kang et al. (2010)

formula. The formula proxies the difference between the risk-neutral and physical variance

as a function of the representative investor’s RRA by assuming a power utility function. It

employs the S&P 500 risk-neutral volatility, risk-neutral skewness, risk-neutral kurtosis and

the physical variance as inputs. We calculate the risk-neutral moments via Bakshi et al.

(2003) method which uses the cross-section of traded S&P 500 option prices. Hence, IRRA
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incorporates information from all traded options by construction. The extracted IRRA values

are within the range of values reported by previous literature.

Next, we investigate whether U.S. IRRA predicts future U.S. REA. To this end, we use

a number of alternative REA proxies. We test IRRA’s forecasting ability across different

forecasting horizons (up to one year) controlling for a large set of variables documented by

the previous literature to predict REA. We conduct statistical inference carefully to cope

with the persistence of regressors. We employ the recently developed instrumental variable

test of Kostakis et al. (2015) designed to deal with the question of predictability in the

case of multiple predictors whose order of persistence is unknown. We find that IRRA is a

statistically significant predictor of REA over and above the set of control variables, i.e. IRRA

contains information that has not already been incorporated by other financial predictors. An

increase (decrease) in IRRA predicts a decrease (increase) in future U.S. REA. We document

the predictive ability of IRRA both in- and out-of-sample. Application of Kelly and Pruit’s

(2015) factor-based approach to forecasting corroborates our results.

We repeat our empirical analysis for South Korea to verify IRRA’s ability to predict REA.

We extract Korea IRRA from options written on the KOSPI 200 index. We choose the South

Korea market as a laboratory of our robustness test for two reasons. First, the informational

content of South Korea option prices is expected to be rich. This is because KOSPI 200

options have become one of the most actively traded option contracts in the world since their

inauguration in 1997. Second, the Korea GDP growth has varied significantly over the last

ten year, making its prediction challenging. We find that an increase (decrease) in the South

Korea IRRA predicts a decrease (increase) in South Korea REA both in-sample as well as

out-of-sample just as was the case with the U.S. economy.

We explain the negative relation between IRRA and future REA by modelling a parsimo-

nious yet flexible production economy in the spirit of the real business cycle (RBC) literature.

The RBC framework is a natural candidate to explain our findings because it allows exploring

the interactions of key macroeconomic variables that arise endogenously from the intertem-

poral optimization problem of households and firms within a general equilibrium setting. The

model is standard: on the production side, we assume a representative firm operating in per-
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fectly competitive markets for both the output and inputs of production. On the household

side, we assume that the representative agent has preferences over consumption dictated by

a power utility function to be consistent with the assumed utility function in the empirical

analysis. The key difference with respect to the baseline RBC setting though, is that we

abstract from shocks to technology on the firms’ side and instead we focus on the real effects

of shocks to households’ risk aversion.

We calibrate the steady state solution of our model to the U.S. economy. We confirm that

the model yields a negative relation between RRA and future REA by (i) investigating the

impulse response function of output to an exogenous shock in RRA, and (ii) running predictive

regressions that employ simulated values of REA and RRA generated by our model. The

intuition for the model’s predictions is that a negative shock in RRA decreases the marginal

utility of consumption and makes agents decrease consumption and hence increase savings

and thus investment. This boosts real economic activity via the accumulation of capital. The

negative predictive relation is more pronounced in the presence of habits in households’ utility

function. The predictions of our model also hold in the case where we allow for heterogeneity

in agents’ risk aversion.

Related literature: Our paper ties four strands of literature. The first strand has to do with

the use of financial variables to predict REA. The rationale is that financial markets reflect

investors’ perceptions about the future state of the economy and hence they can predict REA.

The term spread (Estrella and Hardouvelis, 1991) and default spread (Stock and Watson,

2003) are two prominent predictors of REA. More recently, other financial variables such

as asset pricing factors (Liew and Vassalou, 2000), the TED spread (Chiu, 2010), forward

variances inferred from options (Bakshi et al., 2011), the Baltic dry index (Bakshi et al., 2012),

commodity futures open interest (Hong and Yogo, 2012), and commodity-specific factors

(Bakshi et al., 2014) have been found to predict REA.

The second strand of literature has to do with the estimation of the representative agent’s

risk aversion from index options market prices (Ait-Sahalia and Lo, 2000, Jackwerth, 2000,

Rosenberg and Engle, 2002, Bliss and Panigirtzoglou, 2004, Bakshi and Madan, 2006, Kang

and Kim, 2006, Kang et al., 2010, Kostakis et al., 2011, Barone-Adesi et al., 2014, and Duan
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and Zhang, 2014). This is possible due to the theoretical relation of risk aversion to the ratio of

the risk-neutral distribution and the subjective distribution of the option’s underlying index;

the former can be recovered from option prices (for a review, see Jackwerth, 2004). We choose

Kang et al. (2010)’s methodology to extract IRRA because it is parsimonious in terms of

the required inputs. Most importantly, these inputs can be estimated accurately from the

cross-section of market option prices which are readily available.

The third strand of literature uses the informational content of market option prices to

address a number of topics in economics and finance. The rationale is that market option

prices convey information which can be used for policy making (Söderlind and Svensson, 1997),

risk management (Chang et al., 2012, Buss and Vilkov, 2012), asset allocation (Kostakis et al.,

2011, DeMiguel et al., 2013) and stock selection purposes (for reviews, see Giamouridis and

Skiadopoulos, 2012, Christoffersen et al., 2013). Surprisingly, there is a paucity of research

on whether the information embedded in index option prices can be used to predict REA,

too. To the best of our knowledge, Bakshi et al. (2011) is the only paper which explores this

and documents that forward variances extracted from index options forecast REA.

The fourth strand has to do with the use of RBC models in the finance literature. So far,

RBC models have been used to address pricing puzzles by considering the effects of technology

shocks (e.g., Jerman, 1998, Boldrin et al., 2001, Campanale et al., 2008, Kaltenbrunner and

Lochstoer, 2010, Papanikolaou, 2011). We deviate from previous literature and we investigate

the effects of exogenous shocks to risk-aversion to future REA.

The rest of the paper is structured as follows. Section 2 describes the data. Section 3

explains IRRA’s extraction and results on its time variation. Section 4 presents the empirical

evidence on the IRRA as a predictor of U.S. REA. Section 5 presents further evidence on the

predictive content of IRRA in the case of South Korea. Section 6 presents the model and

discusses its results. Section 7 concludes.
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2. U.S. Data

2.1. Real economic activity data

We obtain monthly data for six alternative measures to proxy U.S. REA over July 1998 to

August 2015. This is a rich period because it includes events of importance such as the August

1998 Russian crisis, the early 2000s recession and the subsequent bullish U.S. stock market,

the 2007-2009 financial crisis and the great economic recession as well as the 2008-2014 U.S.

quantitative easing era.

First, we use industrial production (IPI) which measures the amount of the industries

output. Second, we consider non-farm payroll employment (NFP) defined as the number of

employees in the non-farm sectors in the U.S. economy. Third, we employ real retail sales

including food services sales as a proxy for retail sales (RS). Fourth, we use housing starts

(HS) which measures the total newly started privately owned housing units. We use the

monthly logarithmic growth rates for these four REA proxies. We obtain these data from

the Federal Reserve Economic Data (FRED) database maintained by the Bank of St. Louis

(FRED).

Fifth, we consider the Chicago Fed National Activity Index (CFNAI). CFNAI is a weighted

average of 85 existing monthly indicators of national economic activity. It is constructed to

have an average value of zero and a standard deviation of one. Since economic activity tends

toward trend growth rate over time, a positive (negative) index value corresponds to growth

above (below) trend. The 85 economic indicators that are included in the CFNAI are drawn

from four broad categories of data: production and income; employment, unemployment,

and hours; personal consumption and housing; and sales, orders, and inventories. We obtain

CFNAI from FRED.

Finally, we use the Aruoba-Diebold-Scotti (ADS, Aruoba et al., 2009) business conditions

index. ADS is compiled based on six economic indicators: weekly initial jobless claims,

monthly payroll employment, industrial production, personal income less transfer payments,

manufacturing and trade sales and quarterly real GDP. It blends high- and low-frequency

information, as well as stock and flow data. The average value of the ADS index is zero.

Positive (negative) values indicate better-(worse-) than-average conditions. We obtain ADS
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from the Philadelphia Fed webpage.

2.2. IRRA inputs: S&P 500 options and 5-minute spot data

We use the following data to estimate IRRA at any point in time. First, we obtain S&P

500 European style index option data (quotes prices) for January 1996 to August 2015 from

the Ivy DB OptionMetrics database to compute the S&P 500 risk-neutral moments with a

τ -month horizon (τ = 1 month) via Bakshi et al. (2003)’s model-free method (see Appendix

A). To this end, we use the S&P 500 implied volatilities provided by Ivy DB for each traded

contract. These are calculated based on the midpoint of bid and ask prices using Merton’s

(1973) model. We obtain the closing price of the S&P 500 and the continuously paid dividend

yield from Ivy DB. As a proxy for the risk-free rate, we use the zero-coupon curve provided by

Ivy DB. We filter options data to remove any noise. To this end, we only consider out-of-the-

money and at-the-money options with time-to-maturity 7 to 90 days. We also discard options

with zero open interest and zero trading volume. Furthermore, we retain only option contracts

that do not violate Merton’s (1973) no-arbitrage condition and have implied volatilities less

than 100%. We also eliminate options that form vertical and butterfly spreads with negative

prices, as well as option contracts with zero bid prices and premiums below 3/8$.

Second, we obtain 5-minute intra-day S&P 500 prices from Thomson Reuters Tick History

to estimate the S&P 500 physical variance with a τ -month horizon (τ = 1 month). We assume

that the physical variance follows a random walk in line with Andersen and Bollerslev (1998).

The τ -month physical variance, σ2
p,t(τ), equals the realized variance from t − τ to t, RVt−τ,t,

computed as the sum of the daily realized variances plus the sum of the overnight squared

returns (OR) of the S&P 500 over the last one month, i.e.

RVt−τ,t =
t∑

i=t−τ

σ2
i +

t∑
i=t−τ

OR2
i (1)

where σ2
t is the realized variance on day t and ORt is the overnight return. We calculate

overnight returns as the log difference of each day’s opening price minus the closing price of

the previous day: OR = lnSOpt − lnSClt−1, where SOp and SCl are the opening and the closing

prices of the S&P 500 index, respectively.
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2.3. Control variables and a large macroeconomic dataset

We collect data on a number of variables documented to predict REA by previous literature;

these will be used as control variables in the subsequent predictive regressions. Data span the

same period that IRRA is extracted for, i.e. July 1998-August 2015. First, we obtain monthly

data from the FRED website to measure the term spread (TERM, difference between the

ten-year Treasury bond rate and the three-months Treasury bill rate), default spread (DEF,

difference between the yields of the Moody’s AAA and BAA corporate bonds) and TED

spread (difference between the three-months U.S. Libor rate and the three-months Treasury

bill rate). Second, we obtain monthly data on the monthly Fama-French (1996) high minus low

(HML) and small minus big (SMB) factors from Wharton Research Data Services (WRDS).

Third, we collect data on the Baltic Dry Index (BDI) from Bloomberg.

Fourth, we obtain data on 22 individual commodity futures from Bloomberg to construct

the three Daskalaki et al. (2014) commodity-specific factors, namely hedging-pressure (HP),

momentum (MOM) and basis factors(BASIS); Appendix B describes the construction of these

factors. Table 1 lists the employed commodities categorized in five sectors (grains and oilseeds,

energy, livestock, metals and softs). In addition, we construct a commodity futures open

interest variable (OI) in line with Hong and Yogo (2012). First, we compute the growth rate

of open interest for each commodity futures. Then, at any given point in time, we compute

the median of the growth rates of open interest for all commodities futures of each sector.

Last, we compute the equally weighted average of the medians growth rates of all sectors.

Fifth, we use the options data discussed in Section 2.2 to compute at time t the forward

variance FVt,t+1 between t and t+ 1, i.e. the forward variance with a one-month horizon. To

this end, we follow Bakshi et al. (2011); Appendix C describes the calculation of the forward

variances from the market prices of European call and put option portfolios. Finally, we

obtain the McCracken and Ng (2015) large macroeconomic dataset from FRED. This dataset

consists of 134 monthly macroeconomic U.S. indicators and we will use it in the out-of-sample

tests in Section 4.2.
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3. Extracting risk aversion from option prices

Bakshi and Madan (2006) derive a formula which can be used to extract the risk aversion

of the representative agent from European options market prices. By assuming that a power

utility function describes the representative agent’s preferences, RRA is extracted from the

following equation:

σ2
q,t(τ)− σ2

p,t(τ)

σ2
p,tτ

≈ −γσp,t(τ)θp,t(τ) +
γ2

2
σ2
p,t (κp,t(τ)− 3) (2)

where γ is the RRA coefficient, σ2
q,t(τ) is the risk-neutral variance of the continuously com-

pounded return distribution at time t with horizon τ , and σ2
p,t(τ), θp,t(τ) and κp,t(τ) are the

physical variance, skewness and kurtosis of the continuously compounded return distribution

at time t with horizon τ , respectively.

Equation (2) shows that the RRA extraction requires estimation of the higher order phys-

ical moments (skewness and kurtosis) which is a challenging task. On the one hand, a long

time series is required to estimate higher order physical moments accurately and on the other

hand, a small sample size is needed to capture their time variation (Jackwerth and Rubin-

stein, 1996). To avoid the problem of estimating the physical higher order moments, we use

Kang et al. (2010)’s formula which is a variant of equation (2), i.e.

σ2
p,t(τ)− σ2

q,t(τ)

σ2
q,tτ

≈ γσq,t(τ)θq,t(τ) +
γ2

2
σ2
q,t (κq,t(τ)− 3) (3)

where θq,t(τ) and κq,t(τ) is the risk-neutral skewness and kurtosis of the continuously com-

pounded return distribution at time t with horizon τ , respectively. Kang et al. (2010) derive

equation (3) by also assuming that the representative agent’s preferences are described by a

power utility function. Then, they use the moment generating functions of the risk-neutral

and physical probability distributions and they truncate their expansion series appropriately.

The extraction of IRRA from either equation (2) or (3) is model-dependent. However,

the advantage of extracting RRA from equation (3) rather than from equation (2) is twofold.

First, the former equation requires the risk-neutral skewness and kurtosis rather than their

physical counterparts as inputs. Hence, it circumvents the above mentioned challenges of
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estimating higher order physical moments. This is because the estimation of the higher order

risk-neutral moments is model-free (e.g., Bakshi et al., 2003, Jiang and Tian, 2005, Carr and

Wu, 2009). Therefore, even though we use a model-dependent method to back out RRA,

three out of the four required inputs are model-free in contrast to equation (2).1 Second, the

risk-neutral moments are forward-looking (they can be computed at time t from the market

option prices observed at time t) whereas the physical moments estimates are backward-

looking (they rely on past historical data). This makes equation (3) the natural choice for

the purposes of our study.

We use the 30-days realized variance calculated from 5 minute S&P 500 prices as an

estimate of the physical variance. We compute the S&P 500 risk-neutral moments with a

horizon of τ = 1-month for the S&P 500 by implementing the Bakshi et al. (2003) formulae

(see Appendix A).2 In line with Bakshi and Madan (2006), Kang et al. (2010) and Duan and

Zhang (2014), we use the generalized method of moments (GMM, Hansen, 1982) to estimate

RRA. We minimize the following objective function with respect to γ:

JT ≡ min
γ
g′THTgT (4)

gT ≡
1

T

T∑
t=1

εt ⊗ Zt

εt ≡
σ2
p, t(τ)− σ2

q , t(τ)

σ2
q , t(τ)

− γσq,t(τ)θq,t(τ)− γ2

2
σ2
q,t (κq,t(τ)− 3)

1Inevitably, any method to extract RRA from option prices will be model-dependent. For instance, an
alternative way to extract IRRA would be the Bliss and Panigirtzoglou (2004) method which uses the relation
between the ratio of the risk-neutral to the physical probability density function and the stochastic discount
factor. However, that method is model-dependent, too, because it requires an assumption on the utility
function of the representative agent as well as further parametric transformations and assumptions. Given
that there is not a model-free method to back out IRRA, the “first best” (i.e. use a model-free method to
estimate IRRA) cannot be attained. However, the choice of the Kang et al. (2010) formula attains the “second
best” (i.e. get as many parameters as possible estimated in a model-free way): three out of its four required
inputs can be estimated in a model-free way.

2The risk-neutral and physical variances should not be annualized when used as inputs in equations (2)
and (3). To prove this statement, we multiply and divide equation (3) by 252,

σ∗2p,t(τ)− σ∗2q,t(τ)
σ∗2q,tτ

≈ γ√
252

σ∗q,t(τ)θq,t(τ) +
1

2

γ2

252
σ∗2q,t (κq,t(τ)− 3) = γ∗σ∗q,t(τ) +

1

2
γ∗2σ∗2q,t (κq,t(τ)− 3) θq,t

where * denotes the annualized values. Hence, if we use the annualized instead of the raw variance as input,
we shall estimate the annualized risk aversion coefficient , γ∗ = γ√

252
, which differs from the raw risk aversion

estimate γ. Hence, we use the raw values of the variances as inputs to estimate the risk aversion coefficient.
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where JT is the objective function, gT denotes the sample mean estimate of the orthogonality

condition of the instruments, HT is the inverse of the variance-covariance matrix of the func-

tion gT and ZT are the instruments. In equation (4), there are as many moment conditions

as instruments. In line with the three above mentioned studies, we use three different sets

of instruments to assess whether the choice of instruments affects the extracted IRRA. The

first set consists of a constant and one lag of the risk-neutral variance [σ2
q,t−1(τ)]. The second

set consists of a constant and two lags of the risk-neutral variance [σ2
q,t−1(τ), σ2

q,t−2(τ)]. The

third set contains a constant and three lags of the risk-neutral variance [σ2
q,t−1(τ), σ2

q,t−2(τ),

σ2
q,t−3(τ)].

In line with the three above studies, we extract RRA for a constant time horizon τ = 1

month (=30 days). We record the risk-neutral moments and realized variance at the last

trading day of each month. We use equation (3) to extract the monthly IRRA series with a

rolling GMM estimation using a rolling window of size 30 months.3 This yields an IRRA time

series for the period July 1998 - August 2015 given that our option dataset spans January

1996 to August 2015.

Figure 1 shows IRRA’s monthly time variation for each one of the three sets of instruments

extracted from the rolling GMM. Four remarks are in order. First, IRRA values range from

2.27 to 9.55. These fall within the range of IRRA estimates reported by the previous literature.

Ait-Sahalia and Lo (2000) report a full-sample IRRA of 12.7, Rosenberg and Engle (2002)

report values from 2.26 to 12.55, Bakshi et al. (2003) report values between 1.76 and 11.39,

Bliss and Panigirtzoglou (2004) report a full sample estimate of 4.08, Bakshi and Madan

(2006) report values from 12.71 to 17.33, Kang and Kim (2006) report values between 2 and

4, Kang et al. (2010) 1.2 to 1.4, Barone-Adesi et al. (2014) report values between -0.5 and 3,

and Duan and Zhang (2014) obtain values from 1.8 to 7.1.

Second, IRRA’s time variation is similar across all three sets of instruments. In the

remainder of the paper, we report results for the case of the IRRA estimated by the first set

of instruments comprising the constant and one lag of the risk-neutral variance. Third, we can

see that the U.S. IRRA is not affected by the 1998 Russian crisis and the early March 2001-
3We have also extracted IRRA with rolling windows of sizes 45 and 60 months. The IRRA values are

similar to the ones obtained by a 30 months rolling window.
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November 2001 U.S. recession whereas it increases significantly over the 2007-2008 financial

crisis. Interestingly, it starts decreasing thereafter; this pattern may be a result of the 2008-

2014 quantitative easing monetary policy exercised by the Fed which might have alleviated

U.S. agents’ concerns. Finally, IRRA is persistent (ρ = 0.986). We will take this persistence

into account in Sections 4 where we will explore whether IRRA predicts REA.

4. Predicting U.S. REA

We examine whether the U.S. IRRA predicts U.S. REA growth first in-sample and then

out-of-sample.

4.1. In-sample evidence

To identify whether IRRA predicts REA growth over h forecasting horizons, we regress each

one of the employed measures of REA on IRRA after controlling for a set of variables docu-

mented to predict REA. We estimate the predictive regression:

REAit+h = c+ β1REAt + β2IRRAt + β
′

3xt + εt+h (5)

where REAit+h denotes the growth of the i − th REA proxy (i =1 for IPI, 2 for NFP, 3 for

RS, 4 for HS, 5 for CFNAI, 6 for ADS) over the period t to t+ h, IRRAt is the implied risk

aversion at time t and xt is a (11 × 1) vector which contains a set of control variables. We

compute the h-month overlapping log growth rates of IPI, NFP, RS, and HS. The values of

CFNAI and ADS signify growth or recession by construction and hence, there is no need to

compute the growth rates for these two REA proxies. We set h = 1, 3, 6, 9, 12 months.

We consider the following control variables: term spread (Estrella and Hardouvelis, 1991),

default spread (Gilchrist and Zakrajsek, 2012), TED spread that proxies for funding liquidity

(Chiu, 2010), SMB and HML Fama-French (1996) factors (Liew and Vassalou, 2000), Baltic

dry index (BDI, Bakshi, et al., 2012), forward variances (FV, Bakshi et al., 2011), commodity-

specific factors (hedging-pressure, momentum, and basis, Bakshi et al., 2014), and the growth

rate of the commodity futures market open interest (Hong and Yogo, 2012). The sample
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spans July 1998 - August 2015 (206 observations).

We conduct inference by taking the high degree of IRRA persistent into account. This is

because statistical inference is flawed once conducted by standard/Newey-West t-statistic in

the case where predictors are persistent (e.g., Kostakis et al., 2015). More specifically, we use

the IVX-Wald test statistic (Kostakis et al., 2015) to test the predictive ability of IRRA (for

a description of the test, see Appendix C). The IVX-Wald test is robust to the unknown time

series properties of the predictors. In particular, it does not assume a-priori knowledge of the

degree of persistence and it allows for different classes of persistence of the predictor variables,

ranging from purely stationary to purely non-stationary. It also allows conducting inference

in the case of multiple predictors whereas previous tests related to predictors persistence are

developed only for single predictor models (e.g., Campbell and Yogo’s test, 2006).

Table 2 reports the results from estimating equation (5) for h = 1. We report the stan-

dardized ordinary-least-squares (OLS) coefficient estimates, the Newey-West and IVX-Wald

test p-values of each one of the predictors and the adjusted R2 for any given REA proxy. One,

two and three asterisks denote rejection of the null hypothesis of a zero coefficient based on

the p-values of the IVX-Wald test at the 1%, 5% and 10% level, respectively. Two remarks can

be drawn. First, we can see that IRRA predicts all but one (i.e. RS) REA proxies. Second,

the sign of the IRRA coefficient is negative in all cases. This suggests that an increase in

IRRA predicts a decrease in REA.

Table 3 reports results for the multiple predictor model in the case of a three-month (Panel

A), six-month (Panel B), nine-month (Panel C) and twelve-month (Panel D) horizon. We

can see that IRRA predicts most of the REA proxies at longer horizons, thus extending the

evidence from the one-month results. IRRA is significant for four out of six REA proxies for

longer horizons. More specifically, IRRA predicts NFP and HS at all horizons h > 1 month.

It also predicts RS for horizons up to nine months and IPI for longer horizons (h =9 and

12 months). Regarding the significance of the control variables, we can see that there is no

predictor which is consistently significant across all REA proxies and forecasting horizons.
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4.2. Out-of-sample evidence

In Section 4.1 we documented that IRRA forecasts REA in an in-sample setting. In this

section, we assess the forecasting ability of IRRA in a real time out-of-sample setting over

the period October 2007 - August 2015. This is a period of particular interest because it

includes the onset and development of the recent financial crisis and the subsequent significant

economic recession (also termed Great Recession) and the quantitative easing conducted by

the U.S. Fed. For each REA proxy, we estimate equation (5) recursively by employing an

expanding window; the first estimation sample window spans July 1998 - September 2007.

Then, at each point in time, we form h = 1, 3, 6, 9, 12 months-ahead REA forecasts.

We use the out-of-sample R2 (Campbell and Thompson, 2008) to evaluate the out-of-

sample forecasting performance of IRRA. The out-of-sample R2 shows whether the variance

explained by a full model (which contains IRRA in the set of predictors) is greater or smaller

than the variance explained by a restricted model (which does not contain IRRA within the

set of predictors). Then, the out-of-sample R2
i obtained from predicting the i− th REA proxy

is defined as:

R2
i = 1−

var
[
Et
(
REAFulli,t+h

)
−REAi,t+h

]
var

[
Et
(
REARestrictedi,t+h

)
−REAi,t+h

] (6)

where Et
(
REAFulli,t+1

)
and Et

(
REARestrictedi,t+1

)
denote h-month ahead forecasts from the full and

restricted model, respectively. A positive (negative) out-of-sample R2 suggests that the full

model outperforms (underperforms) the restricted model and hence, IRRA has out-of-sample

predictive ability.

We consider two alternative model specifications. First, we obtain forecasts from the

regression model described by equation (5). In this case, the forecasts Et
(
REAFulli,t+h

)
for the

i− th REA proxy obtained from the full model are:

Et
(
REAFulli,t+h

)
= b0 + b1REAt + b2IRRAt + b

′

3xt (7)

and the forecasts Et
(
REARestrictedi,t+h

)
from the restricted model are:
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Et
(
REARestrictedi,t+h

)
= b0 + b1REAt + b

′

3xt (8)

Second, we consider Kelly and Pruitt’s (2015) three-pass regression filter (3PRF). 3PRF

is developed within the factor-based approach to forecasting advocated by Stock and Wat-

son (2002a, 2002b). Hence, it is a dimension reduction method that is suitable in the case

where the number of potentially useful for prediction variables is large and the number of

observations is relatively small. In contrast to previous factor-based forecasting methods,

3PRF identifies factors that are relevant to the variable that we wish to forecast; these fac-

tors may be a strict subset of the factors driving the predictor variables. For the purposes

of implementing the 3PRF approach, we need to consider a large dataset. Hence, we con-

sider a dataset which includes IRRA and the 134 McCracken and Ng (2015) macroeconomic

variables. Following McCracken and Ng (2015), we transform the original time series into

stationary and we remove outliers; outliers are defined as observations that deviate from the

sample media by more than ten interquartile ranges. Then, we standardize the transformed

variables. Following Kelly and Pruitt (2015), we extract one 3PRF factor and we take care to

avoid any look-ahead bias given that the estimation of the first two steps uses the full sample

(for a description, see Appendix D). For any given REA proxy to be predicted, we construct

the 3PRF factor by removing the variables from the McCracken and Ng (2015) dataset which

measure the same notion of economic activity as the REA proxy does. Once we construct the

3PRF factor, our 3PRF model is

REAit+h = γ0 + γ1Ft + ut+1 (9)

where Ft is the 3PRF factor. We obtain forecasts for the i− th REA proxy from the full and

restricted 3PRF models defined as:

Et
(
REAFulli,t+h

)
= γ0 + γ1F

Full
t and Et

(
REARestrictedi,t+h

)
= γ0 + γ1F

Restricted
t

respectively, where we extract F Full
t from a large set of variables which includes IRRA and

the McCracken and Ng (2015) macroeconomic variables and FRestricted
t from a large set of

variables which includes only McCracken and Ng (2015) variables.
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Table 4 shows the out-of-sample R2 for the case of forecasts obtained from the regression

predictive models [equations (7) and (8), Panel A] and from the two 3PRF models (Panel B).

We can see that the out-of-sample R2 is positive in most cases, i.e. the full model performs

better than the constrained model. This implies that the inclusion of IRRA is statistically

significant in an out-of-sample setting, too. In the case of forecasts obtained by the regression

models, the evidence on this is somewhat weaker for longer horizons. For RS and HS, the full

model outperforms the restricted model across all predictive horizons. The out-of-sample R2

is also positive for short and intermediate forecasting horizons (h = 1, 3, 6 months) in the case

of NFP and CFNAI. In addition, IRRA predicts IPI and ADS for short horizons (h = 1, 3

months and h = 1 month, respectively). In the case of the 3PRF model, the out-of-sample

R2 is positive in all but one cases. The only exception occurs at a one-month horizon for

CFNAI.

Finally, we examine the stability of the IRRA coefficients over the out-of-sample period.

To this end, we estimate equation (5) at each point in time over October 2007-August 2015

by employing an expanding window for each one of the employed forecasting horizons. Figure

3 shows the standardized IRRA coefficients in the case of the one-month forecasting horizon

where we use IPI, NFP, RS, HS, CFNAI and ADS as REA proxies (Panels A, B, C, D, E and

F, respectively). We can see that the time series evolution of the estimated IRRA coefficient

is stable over time. The sign of the estimated IRRA coefficient is negative at each estimation

time step suggesting that a decrease in IRRA predicts an increase in future REA. This is

in line with the results obtained from the in-sample analysis (see Table 2). The time series

evolution of the estimated IRRA coefficient is stable over time for the longer horizons, too,

and hence due to space limitations we do not report additional figures.

5. Further evidence from another market: The South Korea case

We examine whether IRRA predicts REA in South Korea. We consider the case of South

Korea because it has one of the most active option markets in the world and therefore the

informational content of market option prices is expected to be significant. Options written

on the South Korea Composite Stock Price Index (KOSPI) 200 were introduced in July 1997.
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Since then, KOSPI options have become one of the most actively traded contracts in the

world. In 2014, the aggregate trading volume was 462 million contracts which corresponds to

approximately 1.8 million contracts traded on an average day. This figure is greater than the

aggregate trading volume in CBOE for the S&P 500 options which was 223 million contracts

according to the 2014 CBOE Holdings Report. In addition, the South Korea economy has

experienced a significant variation in the growth rates of its Gross Domestic Product (GDP)

over the last ten years, thus making its study challenging. Like most industrialized countries

it was affected negatively by the 2007-2008 crisis. The annual GDP growth fell from 2.8%

between 2007-2008 to 0.7% in 2008-2009 and then it rebounded fast to 6.5% in the next year

slowing down to 3.3% in 2013-2014.

5.1. Data for the South Korea market

We obtain European KOSPI 200 options data from the Korea Exchange (KRX) spanning

January 2004 - June 2015; data prior to this period were not available from KRX. We filter

the KOSPI 200 options data as follows. We only consider out-of-the-money and at-the-money

options with time-to-maturity 7 to 60 days. We remove options with zero open interest and

zero trading volume. We also discard option contracts that have an implied volatility that is

less than zero and greater than 100%; we use Merton’s (1973) model to back out the implied

volatility. We do not consider options with premiums less than 0.02. Finally, we retain options

contracts where the call (put) premium is bigger than the underlying index price (strike price).

Two remarks are also at place. First, we use the 91 days certificate of deposit (CD) rate

as the risk free rate which is the standard practice for the Korea market (e.g., Kim and Kim,

2005). This is because the South Korea treasury bill market is not liquid. Second, we set

the continuous dividend yield equal to zero. This is because we have no access to data on

South Korea dividends. However, the effect of the value of dividend yield on the risk-neutral

moments is small. This is because we use OTM options to calculate the risk-neutral moments.

OTM options have a small delta and therefore any effect of dividends on the underlying index

price and hence on the option price will be small.

We use monthly data for three alternative measures to proxy South Korea REA from June
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2006 to June 2015; we choose Korea proxies of the same type as the U.S. ones wherever there

is data availability. We obtain data on retails sales (RS, proxied by discount store sales) and

unemployment (U, proxied by unemployment rate) from Bloomberg. We also get data on the

industrial production index (IPI) from the Bank of Korea. We use logarithmic growth rates

for U and IPI; RS is already quoted in monthly changes by Bloomberg.

We obtain data for the South Korea variables to be used as control variables in the

predictive regressions from Bloomberg for the period June 2006 to June 2015. We use the

following control variables: TERM, DEF, and TED, BDI, FV.4 We measure TERM as the

difference between the ten-year government bond rate and the 91 days CD rate and DEF as the

difference between AAA and BBB+ South Korea corporate bond yields. We calculate TED

as the difference between the one-year KORIBOR and the one-year monetary stabilization

South Korea bond rate in line with Baba and Shim (2011). We construct FV using the KOSPI

200 options data.

5.2. Results

We estimate South Korea’s IRRA by GMM using a rolling window of 30 monthly observations

just as it was the case with the U.S. IRRA in Section 3. This delivers IRRA over the period

June 2006 to June 2015. We use monthly data on KOSPI 200 options to compute the one-

month horizon KOSPI 200 risk-neutral moments. To estimate IRRA at any point in time, we

estimate the one-month physical variance using monthly data on KOSPI 200. We construct

the one-month physical variance as one-step ahead forecasts from a GARCH(1,1) model using

a rolling window of 30 observations of KOSPI 200.5

Figure 2 shows the evolution of the monthly Korea IRRA. IRRA’s time variation is similar

across all three sets of instruments; in the remainder of this section we will employ IRRA

extracted from the first set of instruments just as we did in the U.S. case. We can see that

the Korea IRRA reaches its highest value over the 2007-2008 U.S. financial crisis just as the
4We do not consider the Korea analogues of the U.S. Fama-French factors and Daskalaki et al. (2014)

commodity-related variables as controls. This is because the Korea Fama-French factors are not available for
the entire time period under consideration and there are no commodity futures contracts traded in Korea.

5We do not estimate the one-month physical variance using high frequency data as we did in the U.S. case.
This is because the intra-day KOSPI 200 futures data are significantly contaminated with measurement errors
and typographical errors; the provided documentation does not allow correcting them.
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U.S. IRRA does; this is another manifestation of the interconnectedness of financial markets

across the globe. Interestingly, the Korea IRRA is negative over April 2011 to February 2012.

This suggests that the Korea representative agent exhibits a risk-loving behaviour over this

period.

First, we examine whether IRRA predicts REA in South Korea in-sample. To this end, we

estimate equation (5) in-sample across the full sample period, namely June 2006 - June 2015.

Then, we examine IRRA’s predictive ability in an out-sample setting over the period January

2009 - June 2015.6 Table 5 Panels A reports results from estimating equation (5) in-sample

for h = 1, 3, 6, 9 and 12 months. We report the standardized ordinary-least-squares (OLS)

coefficient estimates and the IVX-Wald test’s p-value for each one of the predictor variables.

We report results for RS only for h=1; RS is provided by Bloomberg as monthly changes and

hence, we cannot employ RS in a forecasting setting for horizons greater than one-month.

We can draw two main findings, both of which are in-line with the results reported for U.S.

in Section 4.1. First, we can see that IRRA predicts REA in the case of Korea, too. More

specifically, it predicts RS for h = 1 month, U for h > 1 month, and IPI for h > 3 months.

Second, we can see that an increase in IRRA predicts a decrease in REA; the estimated IRRA

coefficient is negative in the case of RS and IPI, whereas it is positive in the case of U. Table

5 Panel B reports the out-of-sample R2. We can see that the in-sample predictive ability

of IRRA also holds in an out-of-sample setting. In particular, conforming to the in-sample

results, IRRA predicts REA in the case of RS for h = 1 month, U for h > 1 month, and IPI

for h > 3 months. 7

6. Explaining empirical evidence: A production model

We assess whether a parsimonious yet flexible production economy modelled along the lines

of the real business cycle (RBC) literature can generate the same predictive high-frequency

relation between risk aversion and future REA that we have identified in the empirical analysis.
6The out-of-sample period does not start in October 2007 as it was the case for U.S. This is because such

a choice would yield a sample with only 15 observations to be used for the estimation of the predictive model
in the first out-of-sample estimation step.

7Application of the Kelly and Pruitt (2015) 3PRF is not possible in the case of Korea because there is not
available an analogous to McCracken and Ng (2015) large Korea macroeconomic dataset.
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6.1. The economic environment

Households

The economy is populated by an infinitely lived representative household endowed with one

unit of time in each period. Time is divided between work Nt and leisure Lt, so that Nt+Lt =

1. The household derives utility from the consumption good Ct and disutility from the fraction

of time spent working. It maximizes expected (discounted) utility

maxEt

∞∑
t=0

βtUt

where

Ut =

(
Ct − hC̄t−1

)1−γt
1− γt

− χN
1+φ
t

1 + φ
, (10)

Ut is the utility function and β is the subjective discount factor. We assume that Ut is

separable over time and over consumption versus labour choices. This utility function posits

that households enjoy utility from the level of their own consumption Ct adjusted for habits,

which in turn depends on aggregate consumption C̄t−1. γt is a variable driving time-variation

in risk aversion and h ∈ [0, 1) is a parameter governing external habits. φ governs the (Frisch)

elasticity of labour supply to the real wage, and χ is a scale parameter to be assigned in

the calibration. We assume that γt follows an autoregressive stochastic process of order one

parameterized in logs:

ln γt = ln γ + ρ (ln γt−1 − ln γ) + εt, εt ∼ N
(
0, σ2

)
, (11)

where εt is an exogenous innovation to risk aversion.

The household’s relative risk aversion is given by

RRAt = −Ct (∂2Ut/∂Ct)

∂Ut/∂C2
t

= γt
Ct

Ct − hC̄t−1
, (12)

where
(
Ct − hC̄t−1

)
/Ct is the consumption surplus ratio. In the special case where there are

no habits, i.e. h = 0, the utility over consumption choices is the same with the utility function
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postulated in the empirical analysis. In this particular case, relative risk aversion coincides

with γt. In the more general case that allows for habits, risk aversion will also be affected

by the dynamics of consumption. The more general specification adopted in the theoretical

model will allow us to explore the propagation of shocks to risk-aversion both in the presence

as well as in the absence of habits. Notice that the empirical IRRA time series extracted from

option prices may be consistent with the presence of habits because its time variation may

reflect the time variation in the consumption surplus ratio in equation (12).

The household receives a real wage Wt in exchange for supplying labour services and

accumulates physical capital, Kt which rents to the firms at the net rate of return Rt−1.

Capital accumulation follows the law of motion:

Kt+1 = (1− δ)Kt + It, (13)

where It denotes investment, δ is a constant rate of depreciation and Kt is predetermined at

time t.

The intertemporal problem of the household is to maximize current and future expected

utility (equation (10)) subject to the budget constraint

Ct + It = Rt−1Kt +WtNt,

and the law of motion for capital [equation (13)] where Rt−1 is the real return on capital at

t − 1. The first order conditions for dynamic optimality with respect to Ct, Nt, and Kt+1

deliver a standard Euler equation:

λt = βEtλt+1 [Rt + 1− δ] , (14)

where λt denotes the marginal utility of consumption

λt =
(
Ct − hC̄t−1

)−γt
,
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and an equation for labour supply,

λtWt = χNφ
t .

The above expression equalizes the marginal disutility from work χNφ
t to the return from a

marginal increase in labor supply in utility units, λtWt.

Firms

A representative perfectly competitive firm produces a homogeneous good Yt using a stan-

dard Cobb-Douglas technology

Yt = AK1−α
t Nα

t . (15)

We interpret the level of production Yt as the theoretical analogue of the various proxies of real

economic activity used in the empirical analysis. We assume that total factor productivity

A is constant because we are only interested in the dynamics generated by the shock to risk

aversion and hence we abstract from technology shocks. At every time t, firms minimize the

cost of their inputs subject to the production technology in equation (15) (static problem).

The markets for capital and labour are assumed to be perfectly competitive which implies

that the real return on capital and the real wage equal the marginal product of capital and

labour, respectively:

Rt = (1− α)AK−αt Nα
t , (16)

Wt = αAK1−α
t Nα−1

t . (17)

Equilibrium

We define now the concept of a competitive general equilibrium in our model.

The competitive equilibrium is a sequence of quantities {Ct, Nt, Kt+1, It, Yt}∞t=0, and prices

{Rt,Wt}∞t=0 such that 1) given the prices and the exogenous stochastic process for γt, the

vector of quantities satisfies the household’s conditions for dynamic optimality, i.e. the Euler

equation

(Ct − hCt−1)−γt = Etβ (Ct+1 − hCt)−γt+1
[
(1− α)K−αt+1N

α
t+1 + 1− δ

]
, (18)
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and the labour supply equation

Wt = χNφ
t (Ct − hCt−1)γt , (19)

the feasibility constraint

Yt = Ct + It,

the production function (15) and the law of motion for capital (13);

2) The price system solves the firm’s first order conditions (16) and (17);

3) The exogenous stochastic process for the coefficient of risk aversion obeys equation (11).

6.2. Solving the model

The solution to the full system of non-linear dynamic equations listed in the characterization of

the competitive general equilibrium is a list of equations, called policy functions. These relate

the vector of all current period endogenous variables −→x t only to the current exogenous shock

to risk-aversion γt and the past state of a subset of endogenous variables −→x −t−1, called ‘state

variables’. This subset −→x −t−1 includes the variables whose value at time t is predetermined,

like Kt, and the variables that appear with a lag, Ct−1 and γt−1. So, for example, the policy

function for consumption is a function Ct = C
(−→x −t−1, γt; Ω

)
, where Ω is the set of parameter

values to be assigned in the calibration stage.

Given that the model has no closed form solution, we solve it numerically as follows. First,

we assign parameter values to pin down the steady-state of the model. Then, we approximate

the model up to a second order approximation around the steady state. Finally, we solve for

the policy functions using the Kim et al. (2005) algorithm.

Solving the model at the steady state

The deterministic steady-state of the model is the stationary point −→x t = −→x t−1 = −→x . It can

be solved in closed form by assigning parameter values in a particular order (see Miao, 2014).

We solve the model at the steady-state by calibrating its parameters; we choose their values

so as to match key statistics for the U.S. economy.

In line with the RBC literature, we assume that one period in the model corresponds to
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a quarter. In line with Miao (2014), we set the labour share of income α = 0.67, β = 0.99

(which implies a real rate of return of about 1% per quarter). We set the depreciation rate

of capital to the conventional value of δ = 0.025 in line with estimates for the US economy

(see Yashiv 2016). We normalize the long run value of total factor productivity, A to one.

Solving the Euler equation (18) for the capital-labour ratio and evaluating it at the steady

state yields
K

N
=

[
1− β (1− δ)
β (1− α)

]− 1
α

(20)

Hence, we can recover the capital-labour ratio once we assign parameter values for α, β

and δ. In turn, given the capital-labour ratio and α, we can compute the return to labour,

W, and the return to capital R+ 1− δ, using equations (16) and (17), respectively. We then

normalize employment to the standard value of N = 0.33, which implies that households

work 8 out of 24 hours a day. This allows us to compute the stock of capital solving for K

equation (20), the level of investment as I = δK, output Y making use of the production

function in (15) and consumption as C = Y − I. The marginal utility of consumption can be

recovered as [C (1− h)]−γ once we assign a value to the habit parameter h. In what follows

we are interested in exploring the behaviour of the model both for the case where we abstract

from habits, i.e. h = 0, and for the case that allows for habits. In the latter case, we select a

value of h = 0.6, which is in line with the habit estimates in Christiano et al. (2005). Finally,

the value of the scale parameter χ in the utility function is implied by the intersection of the

labour demand and supply equations (17) and (19), respectively:

χ = λWN−φ

where the inverse Frisch elasticity of labor supply, φ, is set to the value of 2, in line with the

evidence in Chetty et al (2012).

We complete the solution of the model at the steady state by assigning values to the

parameters governing the stochastic process for γt, namely γ, ρ and σ. We do so by simulating

model’s RRA via equation (12) so that we match the the mean, standard deviation and

autocorrelation of the simulated RRAt with the empirical mean, standard deviation and
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autocorrelation of the U.S. IRRA series estimated in Section 3. We perform the simulation

over 100,000 quarters by drawing 100,000 respective εt. We perform the matching by a trial

and error iterative approach. We convert the empirical coefficients from a monthly to a

quarterly frequency by taking monthly averages over each quarter. The target values for the

mean, standard deviation and autocorrelation of the simulated series for risk aversion are 5.8,

1.38 and 0.966 respectively. Table 6 reports parameter values, the steady-state values of the

endogenous variables and the calibrated parameter values assigned to γ, ρ and σ for the RBC

models with and without habits.

Generating impulse response functions and simulating the model

To assess whether the proposed model explains the empirically documented relation between

IRRA and future REA, we (i) examine the impulse responses of the endogenous variables to a

shock in γt, and (ii) we simulate time series of γt and Yt and examine their predictive relation.

To calculate the impulse responses, we perturb the steady-state equilibrium once with a

single innovation εt at time t which generates a deviation of γt at time t relative to its steady-

state value at t−1. Given γt, we obtain the value for the vector of endogenous variables −→x t at

time t via the policy functions −→x t = f
(−→x −t−1, γt; Ω

)
, where −→x −t−1 is the vector of steady-state

values for the state variables. For the subsequent periods, we compute the values of γt+h,

for h = 1, 2, ..., T periods ahead by taking the exponent of γt in equation (11) and iterating

forward, under the assumption that the realized εt+h = 0 for h = 1, 2, ..., T . Being equipped

with a time series for γt+h, for h = 1, 2, ..., T , we iterate on the policy functions to simulate

the dynamics of the endogenous variables −→x t+h = f
(−→x −t+h−1, γt+h; Ω

)
.

To obtain a simulated time series of γt and Yt, we perturb the stationary equilibrium with

a random sequence of N innovations to risk aversion, i.e., we produce a vector of {εt+h}Nh=0.

Iterating on the law of motion for γt [equation 11], we generate a time series for this exogenous

variable. Given the values of {γt+h}Nh=0, we iterate on the policy functions to produce a path

for the vector of endogenous variables −→x t+h = f
(−→x −t+h−1, γt+h; Ω

)
.

6.3. Results and discussion

Inspecting the mechanism through impulse responses
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We inspect impulse responses of the model’s endogenous variables to a negative exogenous

innovation to risk-aversion. This allows us to provide intuition for the mechanism by which

shocks to risk aversion propagate to the real economy and explore the causal impact of an

exogenous change in risk-aversion at time t on the future growth rates of production, i.e.,

lnYt+h − lnYt, for h = 1, ..., 40 quarters. Each panel in Figure 4 reports the responses

obtained for the model without habits (dotted blue line) and with habits (solid red line) to a

one standard deviation negative innovation to γt. All variables in Figure 4 are expressed in

log deviations from the steady-state, with the exception of risk aversion, which is expressed

in level deviations, and GDP growth in the last panel, which is measured in log deviations

relative to the impact period t,. i.e. lnYt+h − lnYt.

First, we consider the case where we set the habit parameter h = 0; this implies that

RRAt = γt (equation (12)). We can see that a decrease in RRA yields a subsequent increase

in Yt+h over a number of subsequent quarters. This is in line with the previously provided

empirical evidence. The impulse response function reveals the channel via which this causal

effect occurs. The first panel of the figure shows that RRAt drops as soon as the shock appears

and returns gradually to its long run average, as dictated by the mean reverting process in

equation (11). The marginal utility of consumption λt = C−γtt , reported in the next panel,

also falls following the decrease in γt.8 Intuitively, periods when γt is low are times when the

marginal utility of consumption is low and hence consumption is valued less, so consumption

falls, as reported in the third panel.

In turn, real wages rise. This is explained by the first order condition for labour supply

in equation (19), Wt = χ
Nφ
t

λt
given the initial fall in λt. Intuitively, for a given labour supply

Nt, the disutility of work Nφ
t increases relative to the marginal utility of consumption, hence

the workers require a higher real wage.

Given that real wage increases and capital at time t is predetermined, equation (17) shows

that employment Nt must fall to equalize the marginal product of labour to the real wage

(see the fourth panel in Figure 4). Equation (16) shows that the lower level of Nt generates

a decrease in the marginal product of capital and hence in the rate of return on capital, as
8Notice that ∂C−γtt /∂γt = − ln (Ct) c

−γt
t > 0 because Ct < 1.
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shown in the fifth panel of Figure 4. Intuitively, the return on capital falls because savings

increase since consumption falls. Given that the model has no financial intermediaries, any

increase in savings translates in an increase in investments as shown in the sixth panel in

Figure 4. The rise of investment It at time t implies an increase in capital Kt+1 at time t+ 1

[equation (13)] and this leads to an increase in Yt+1 (last panel).

At this point, a remark is in order. At time t, GDP decreases as a response to the

contemporaneous shock on RRA (see the eighth panel), reflecting the fall in employment. This

is because Yt = AK1−α
t Nα

t . Given that Kt is predetermined at time t, the fall in employment

directly translates into an fall in GDP. However, capital starts increasing thereafter because

investment increases as we described. This delayed increase in capital taken together with

the reversion of employment to its steady-state value, implies that output growth is positive

between time t and t+ 1 (see the last panel). In the following quarters, capital accumulation

and the increase in employment continue driving output growth, leading to a negative relation

between γt and GDP growth, ln(Yt+h)− ln(Yt), which remains positive for various quarters h,

extending far beyond the 1-year horizon considered in the empirical section.

The model’s impulse response functions confirm the negative relation between RRA and

future REA for the case of habits, too. In the case where habits are introduced into the

model, the household’s relative risk aversion no longer coincides with γt because it is affected

by the dynamic behaviour of consumption [see equation (12)]. Qualitatively, the propagation

of shocks to risk-aversion follows the same logic discussed above for the no-habit case. How-

ever, we can see that in the presence of habits, the marginal utility of consumption becomes

more sensitive to exogenous changes in γt.9 Hence, the impact of the shock to RRA on the

propagation of all real variables is magnified. In particular, the impulse responses reported

in the red lines of Figure 4 reproduce the familiar result that introducing habits in a dynamic

stochastic general equilibrium model increases persistence in the responses of the endogenous

variables by making the impulse responses more hump-shaped. The initial decrease in GDP

on the impact of the shock at time t, is followed by a faster recovery than in the no-habits
9Notice that the response of the marginal utility of consumption to the impact of an exogenous change to γt

is ∂ (ct − hcss)−γt /∂γt = − ln (ct − hcss) c−γtt > 0, where css denotes the steady-state value of consumption.
ln (ct − hcss) is negative and it increases in absolute value with the value of h because 0 < ct − hcss < 1.
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economy. As a consequence, exogenous shocks to risk aversion predict stronger changes in

future output than in the no-habit economy.

Simulations

To provide further evidence that the model reproduces the predictive relation identified in

the empirical analysis, we simulate time series for output Yt and risk aversion RRAt for the

no-habit and habit cases. We draw a random sequence of 100,000 innovations for εt, which

leads to exogenous variation in γt according to equation (11). In turn, shocks to risk-aversion

engenders fluctuations in all the endogenous variables, including Yt. We collect a vector of

100,000 artificial observations for both RRAt and Yt, and run the regression:

∆Yt,t+h = c+ bRRAt + εt+h (21)

where ∆Yt,t+h is measured as ln (Yt+h)− ln (Yt) for h = 1, 2, 3 and 4 quarters. Table 7 reports

the estimated RRA coefficient along with the Newey-West and IVX-Wald p-values for the

no-habits and habits models.

We can see that the estimated coefficients are negative and significant at all horizons

between 1 quarter and 1-year. This confirms that the model reproduces the same predictive

relation that we have identified in the empirical analysis of Section 4. Furthermore, we can

see that the introduction of habits magnifies the negative predictive relation between risk

aversion and future REA, just as was discussed in the impulse response analysis. Notice that

in equation (21) there is no need to add any control variables as we did in the empirical

regression in equation (5). This is because in the theoretical model, RRA is the only source

of fluctuation in REA by construction.

6.4. An extension to heterogeneous households

We extend the baseline model presented in the previous section to explore the robustness of the

results to heterogeneity in agents’ risk-aversion. We allow for two types of households indexed

by i = {A,B}, differing only in the steady-state level of risk-aversion. We calibrate the model

following the same steps as in Section 6.2, under the assumption that both households work
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the same amount of hours and comprise the same measure of workers which we normalise to

0.5. The equilibrium is therefore characterized by the following set of equations: two Euler

equations

(Ci,t − hCi,t−1)−γi,t = Etβ (Ci,t+1 − hCi,t)−γi,t+1
[
(1− α)K−αt+1N

α
t+1 + 1− δ

]
, for i = {A,B} ,

(22)

two labour supply equations

Wt = χNφ
i,t (Ci,t − hCi,t−1)γi,t , for i = {A,B} , (23)

two laws of motion for the capital stock

Ki,t+1 = (1− δ)Ki,t + Ii,t, for i = {A,B} (24)

the competitive factor prices in (16) and (17), the budget constraints:

Ci,t + Ii,t = Rt−1Ki,t +WtNi,t, for i = {A,B} ,

and the feasibility constraint

Yt = Ct + It,

where Ct, It, Nt and Kt denote aggregate variables.10 Finally, we assume that time variation

in risk aversion for the two households is driven by the same stochastic process:

ln γi,t = ln γi + ρ (ln γi,t−1 − ln γi) + εt, εt ∼ N
(
0, σ2

)
and for i = {A,B} .

We calibrate the model with heterogeneous agents using the values of parameters shown

in Table 6 for the case of habits. In Figure 5, we report impulse responses to an exogenous

shock to εt for two different parameterizations of risk-aversion. In the first case, depicted by
10Aggregate variables are computed as Xt = 0.5XA + 0.5XB for X = {Ct, It, Nt,Kt} .
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the blue dotted line, we assume that both households have the same γi = 2.241, so as to

reproduce the same impulse responses and predictive relation between risk-aversion and real

economic activity as in the habit economy in Figure 4. In the second case, depicted by the

red solid line, we explore impulse responses to the same shock, but under a mean-preserving

spread in the coefficient governing risk aversion, i.e., we set γA = 2.141 and γB = 2.341. We

can see that introducing heterogeneity in risk-aversion across households, virtually reproduces

the same predictive relation obtained for the homogeneous economy.

7. Conclusions

The recent financial crisis and the subsequent economic recession has revived the debate

about the usefulness of financial variables to forecast future real economic activity (REA).

We propose a new predictor of REA, namely the representative agent’s implied relative risk

aversion (IRRA) extracted from index option market prices.

We extract U.S. IRRA from S&P 500 index options and we find that it predicts future

U.S. REA both in- and out-of-sample. An increase (decrease) in IRRA predicts a decrease

(increase) in future REA. This holds once we control for other long-standing as well as more

recently proposed REA predictors. Our results are robust for a number of REA U.S. proxies

and hold even once we correct inference by taking the persistence of predictors into account.

We explain the negative predictive relation between risk aversion and future REA by invoking

a production economy model. Interestingly, we document that the predictive ability of market

option prices for future REA is not confined only in the U.S. economy. We extract IRRA

from the highly liquid South Korea KOSPI 200 options market and we find that it predicts

the South Korea future REA, too. Our results imply that the informational content of index

option prices synopsized by IRRA contains more information than that already contained in

other financial variables to predict REA. Hence, IRRA should be added to the existing list of

REA predictors.
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Appendix A: Construction of the risk-neutral moments

We compute the S&P 500 risk-neutral moments from market option prices following Bakshi et

al. (2003) methodology. The advantage of this methodology is that it is model-free because it

does not require any specific assumptions for the underlying’s asset price stochastic process.

Let S(t) be the price of the underlying asset at time t, r the risk-free rate and R(t, τ) ≡

ln[S(t + τ)] − lnS(t) the τ -period continuously compounded return. The computed at time

t model-free risk-neutral volatility [σq,t(τ)], skewness [θq,t(τ)] and kurtosis [κq,t(τ)] of the log-

returns R(t, τ) distribution with horizon τ are given by:

σq,t(τ) =

√
EQ
t [R(t, τ)2]− µ(t, τ)2 =

√
V (t, τ)erτ − µ(t, τ)2 (A.1)

θq,t(τ) =

EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)3]

EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)2]3/2

=
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2]3/2
(A.2)

κq,t(τ) =

EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)4]

{
EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)2]}2 (A.3)

where V (t, τ), W (t, τ) and X(t, τ) are the fair values of three artificial contracts (volatility,

cubic and quartic contract) defined as:

V (t, τ) = EQ
t [e−rτR(t, τ)2], W (t, τ) ≡ EQ

t [e−rτR(t, τ)3] and X(t, τ) ≡ EQ
t [e−rτR(t, τ)4]

and µ(t, τ) is the mean of the log return over the period τ defined as:

µ(t, τ) ≡ EQ
t {ln(St+τ/St)} ≈ erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ)

The prices of the three contracts can be computed as a linear combination of out-of-the-money

call and put options:
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V (t, τ) =

∞∫
St

2 (1− ln(K/St))

K2
C(t, τ ;K)dK +

+

St∫
0

2 (1 + ln(St/K))

K2
P (t, τ ;K)dK (A.4)

W (t, τ) =

∞∫
St

6 ln(K/St)− 3 ln(K/St)

K2
C(t, τ ;K)dK +

+

St∫
0

6 ln(St/K) + 3 ln(St/K)

K2
P (t, τ ;K)dK (A.5)

X(t, τ) =

∞∫
St

12 [ln(K/St)]
2 − 4 [ln(K/St)]

3

K2
C(t, τ ;K)dK +

+

St∫
0

12 [ln(St/K)]2 + 4 [ln(St/K)]3

K2
(A.6)

where C(t, τ ;K) (P (t, τ ;K) ) are the call and put prices with strike price K and time to

maturity τ .

Equations (A.4), (A.5) and (A.6) show that to compute the risk-neutral moments, a

continuum of out-of-the-money calls and puts across strikes is required. However, options

trade for discrete strikes. We also need constant-maturity risk-neutral moments to extract

IRRA corresponding to a 30-days constant horizon. We estimate the risk-neutral moments

of the S&P 500 returns distribution in line with Jiang and Tian (2005), Carr and Wu (2009),

Chang et al. (2013), and Neumann and Skiadopoulos (2013). First, we keep only maturities

for which there are at least two out-the-money puts and two out-the-money calls. In addition,

to ensure that the options span a wide range of moneyness regions, we also discard maturities

for which there are no options with deltas below 0.25 and above 0.75; we calculate deltas by

using the implied volatility of the closest-to-the-money option. Next, for any given maturity
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and date t, we convert strikes into moneyness (K/S(t)) levels. Then, we interpolate using a

cubic spline across the implied volatilities to obtain a continuum of implied volatilities as a

function of moneyness levels. To compute constant maturity moments, for each moneyness

level, we interpolate across implied volatilities in the time dimension using a cubic spline. We

keep the implied moments with a constant one-month maturity. Finally, implied volatilities

are converted to option prices using Merton’s (1973) model. Using trapezoidal approximation,

we compute the prices for the three contracts which we then use to compute the risk- neutral

moments.
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Appendix B: Construction of the commodity factors

We construct the three commodity risk factors (hedging-pressure, basis and momentum risk

factors) along the lines of Daskalaki et al. (2014).

B.1 Hedging-pressure risk factor

We denote as HPi,t the hedging pressure for any commodity i at time t defined to be the

number of short hedging positions minus the number of long hedging positions, divided by

the total number of hedgers in the respective commodity market. Risk averse speculators

take futures positions only if they receive compensation and they share the price risk with

hedgers (hedging pressure hypothesis). So, if HPi,t is positive (negative), hedgers are net

short (long) in the futures contract. Speculators are willing to take the long (short) position

only if they receive a positive risk premium. At any given month t, we construct a zero cost

mimicking portfolio in line with the above strategy. First, we calculate HPi,t for each futures

contract. Then, we construct two portfolios: portfolio H that contains all commodities with

positive HP and portfolio L that contains all commodities with negative HP . At time t,

we construct the high minus low HP risk factor by going long in portfolio H and short in

portfolio L. Finally, at time t + 1, i.e. the next month, we calculate the realized mimicking

portfolio return realized over t to t+ 1. We construct a time series of our factor by repeating

the above steps throughout our sample.

B.2 Momentum risk factor

According to Gordon et al. (2012), a negative shock to inventories leads to an increase in prices

which is then followed by a short period of high expected futures returns for the respective

commodity. This occurs because demand exceeds the supply for the commodity for that period

and thus a price momentum is created. At any point in time t, we construct two portfolios:

portfolio H that contains all commodities with positive prior 12-month average return and

portfolio L that contains those with negative prior 12-month average return. Then at t, we

construct the high minus low momentum zero-cost risk factor, by going long in portfolio H

and short in portfolio L. Finally, at time t+ 1, i.e. the next month, we calculate the realized
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mimicking portfolio return realized over t to t + 1. We construct a time series of our factor

by repeating the above steps throughout our sample.

B.3 Basis risk factor

According to the theory of storage, a positive basis is associated with low inventories for any

given commodity. In addition, Gordon, et al. (2012) find that a portfolio of commodities with

a high basis outperforms the portfolio of commodities with a low basis. At any point in time

t, we construct two portfolios: portfolio H that contains all commodities with positive basis

and portfolio L that contains all commodities with negative basis. Then, we construct the

zero-cost high minus low basis risk factor by going long in portfolio H and short in portfolio

L. Finally, at time t + 1, i.e. the next month, we calculate the realized mimicking portfolio

return realized over t to t+ 1. We construct a time series of our factor by repeating the above

steps throughout our sample.
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Appendix C: The IVX-Wald test (Kostakis et al., 2015)

C.1 The IVX estimator

Consider the following predictive regression:

yt+1 = c+ Axt + εt+1 (C.1)

where A is a (m× r) coefficient matrix and:

xt+1 = Rnxt + ut+1 (C.2)

with xt = (x1t, x2t, ..., xrt) being the vector of predictors employed in (C.1), Rn = Ir + C
nα

for some α ≥ 0, C = diag(c1, ..., cr) and n being the sample size. The IVX methodology

does not require a-priori knowledge of the predictors’ degree of persistence. In fact, it allows

for various classes of persistence through the autocorrelation matrix Rn; the accommodated

classes of persistence vary from purely stationary (ci < 0 for all i and alpha = 0) to purely

non-stationary (C = 0 or α > 1).

We estimate equation (C.1) via two-stage least squares based on the near-stationary in-

struments z̃t and not the initial predictors xt:

ÃIV X = Y′Z̃
(
X′Z̃

)−1
=

n∑
t=1

(yt − ȳn)z̃′t−1

[
n∑
j=1

(xj − x̄n−1)z̃′j−1

]−1
(C.3)

where ȳn = 1/n
∑n

t=1 yt, x̄n−1 = 1/n
∑n

t=1 xt−1, Z̃ =
(
z̃′0, ..., z̃

′
n−1
)
is the instrument matrix,

and Y = (Y ′1 , ..., Y
′
n) and X =

(
X ′0, ..., X

′
n−1
)
are the demeaned predictive regression matrices;

we take the demeaned predictive regression matrices because we allow for a constant in the

predictive regression given in equation (C.1). Following Kostakis et al. (2015), we choose

CZ = −Ir and β = 0.95.

The intuition behind the IVX methodology is to construct an instrumental variable with

a known degree of persistence from the initial predictors xt which has an unknown degree of

persistence. Once we have done that, we apply standard instrumental variable estimation.
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To construct the near-stationary instrumental variable z̃t, we first estimate equations (C.1)

and (C.2) with ordinary-least squares. Then, we construct z̃t, initialized at z̃0 = 0, as follows:

z̃t = Rnz z̃t−1 + ∆xt (C.4)

where Rnz = Ir+ Cz
nβ

is an artificial autoregressive matrix with specified persistence, β ∈ (0, 1)

and Cz < 0.

C.2 The IVX-Wald test

We test for the predictive ability of xit, i.e. we test the null hypothesis:

H0 : Hvec(A) = 0

where H is a known r× r matrix whose (i, i) entry is one and the remaining entries are zero,

i.e. we test for the significance of each predictor separately.

The IVX-Wald test statistic for testing the H0 is:

WIV X =
(
HvecÃIV X

)′
Q−1H

(
HvecÃIV X

)
H0∼ χ2(1) (C.5)

where:

QH = H
[
(Z̃ ′X)−1 ⊗ Im

]
M
[
(X′Z̃)−1 ⊗ Im

]
H ′ (C.6)

M = Z̃ ′Z̃ ⊗ Σ̂εε − nz̄n−1z̄′n−1 ⊗ Ω̂FM (C.7)

Ω̂FM = Σ̂εε − Ω̂εuΩ̂
−1
uu Ω̂′εu (C.8)

To calculate the test statistic in (C.5), we need to construct the following short-run and

43



long-run covariance matrices:

Σ̂εε =
1

n

n∑
t=1

ε̂tε̂
′
t, Σ̂εu =

1

n

n∑
t=1

ε̂tû
′
t, Σ̂uu =

1

n

n∑
t=1

ûtû
′
t (C.9)

Λ̂uu =
1

n

Mn∑
i=1

(
1− i

Mn + 1

) n∑
t=i+1

ûtû
′
t−i, Ω̂uu = Σ̂uu + Λ̂uu + Λ̂′uu (C.10)

Λ̂uε =
1

n

Mn∑
i=1

(
1− i

Mn + 1

) n∑
t=i+1

ûtε̂
′
t−i, Ω̂εu = Σ̂εu + Λ̂′uε (C.11)

where ε̂t and ût are the ordinary least squares residuals from equations (C.1) and (C.2),

respectively, and Mn is a bandwidth parameter satisfying Mn → ∞ and Mn/
√
n → 0 ad

n→∞. Following Kostakis et al. (2015), we choose Mn = n1/3; the choice of the bandwidth

parameter does not affect the properties of the IVX-Wald test statistic.
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Appendix D: The three-pass regression filter (Kelly and Pruit, 2015)

The three-pass regression filter (3PRF) is a dimension reduction method. It identifies factors

that are relevant to the variable that we wish to forecast (forecast target, y). These factors

may be a strict subset of the factors driving the predictor variables (X). To extract the factors

we use a set of proxies which are variables that are related to the forecast target.

To fix ideas, we consider the following variables. First, y = (y1, y2...yT )′ is a (T ×1) vector

of the forecast target where T is the number of time series observations in the in-sample

period. Second, X is a (T × N) matrix of the standardized predictor variables where N is

the number of predictors. We denote with xit the (t, i)-th element of the X matrix, i.e. the

t-th time series observation of the i-th predictor (i = 1, 2, ...N and t = 1−h, 2−h, ..., T −h).

Third, Z is the (T × L) matrix of proxies, i.e. variables which are driven by target relevant

factors. Note that L is the number of proxies. We denote with zlt the (t, l)-th element of the Z

matrix, i.e. the t-th time series observation of the l-th proxy (l = 1, 2, ...L and t = 1, 2, ..., T ).

Following Kelly and Pruitt (2015), we extract the 3PRF factor using one proxy (L = 1),

namely the forecast target (z = yT ). To fix ideas, standing at time T , we construct the

h-month out-of-sample forecast as follows. First, we run N time-series regressions:

xi,T−h = φ0,i + z′φi + εi,t

= φ0,i + φiyT + εi,t for i = 1, 2, ...N (D.1)

Next, we retain the estimated φ̂i and we estimate cross-sectional regressions at times t =

1, 2, ..., T − h and at time T :

xit = γ0,i + φ̂′iFt + εi,t for t = 1, 2, ...T − h and T (D.2)

This yields the factor estimates F̂1, F̂2, ..., F̂T−h and F̂T . Then, we use F̂1, F̂2, ..., F̂T−h to

estimate the third-pass regression:

yT = β0 + ˆF ′T−hβ + ηt+1 (D.3)
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Finally, we use the estimated coefficients and the estimated factor F̂T to construct our forecast:

ET (yT+h) = β0 + F̂ ′Tβ (D.4)

Note that in line with Kelly and Pruit (2015), we take care to avoid any look-ahead bias by

using information up to time T to estimate the factor from equation (D.2) and to estimate

β0 and β from equation (D.3). In the latter case, this requires we estimate (D.3) using

observations on the factor up to T − h (i.e. up to FT−h).
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Figure 1: Evolution of the U.S. implied risk aversion
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The figure shows the evolution of the U.S. implied risk aversion (IRRA) over July 1998 - August
2015. We extract the IRRA time series via Kang et al. (2010) formula by performing a generalized-
method-of-moments (GMM) rolling window estimation. We use an estimation window with size 30
months and three sets of instruments to obtain three respective IRRA time series.
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Figure 2: Evolution of the South Korea implied risk aversion
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The figure shows the evolution of the South Korea implied risk aversion (IRRA) over June 2006
- June 2015. We extract the IRRA time series via Kang et al. (2010) formula by performing a
generalized-method-of-moments (GMM) rolling window estimation. We use an estimation window
with size 30 months and three sets of instruments to obtain three respective IRRA time series.
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Figure 3: Stability of U.S. IRRA coefficients
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Panel E: Predicting CFNAI

-­‐0.4	
  

-­‐0.3	
  

-­‐0.2	
  

-­‐0.1	
  

0	
  
Oct-­‐07	
   Oct-­‐08	
   Oct-­‐09	
   Oct-­‐10	
   Oct-­‐11	
   Oct-­‐12	
   Oct-­‐13	
   Oct-­‐14	
  

Panel F: Predicting ADS

The figure shows the standardized U.S. IRRA coefficients from the estimated multiple predictor re-
gression [equation (5)] for various real economic activity (REA) proxies and for a one-month horizon
over the out-of-sample period October 2007 - August 2015. The REA proxies considered are: indus-
trial production (IPI), non-farm payrolls (NFP), retail sales (RS, proxied by real retail sales), housing
starts (HS), the Chicago Fed National Activity Index (CFNAI) and the Aruoba-Diebold-Scotti busi-
ness conditions index (ADS). The multiple predictor model includes the lagged REA and implied
relative risk aversion (IRRA) as predictors and is augmented by a set of control variables: term
spread (TERM), default spread (DEF), TED spread (TED),Fama-French (1996) Small-Minus-Big
factor (SMB), Fama-French (1996) High-Minus-Low factor (HML), Baltic Dry Index (BDI), forward
variance (FV), hedging pressure commodity factor (HP), momentum commodity factor (MOM), basis
commodity factor (BASIS), commodities open interest (OI). We estimate IRRA by the generalized-
method-of-moments (GMM) with a 30-months rolling window using equation 3

.
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Figure 4: Production economy model: Impulse responses to a risk-aversion shock
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The figure shows the impulse responses generated by the production economy model regarding the
impact of a risk-aversion shock for the model without habits (blue dotted line) and with habits (red
solid line) on the set of the model’s endogenous variables. All impulse responses are expressed in
log deviations from the steady-state, except for relative risk aversion, which is expressed in level
deviations and GDP growth in the last panel, which is measured in log deviations relative to the
impact period t,. i.e. lnYt+h − lnYt, h = 1, 2, ..., 40 quarters.
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Figure 5: Impulse responses to a risk-aversion shock:
Homogeneity vs. heterogeneity in risk-aversion

The figure shows impulse responses generated by the production economy model regarding the impact
of a risk-aversion shock for the model with homogeneous workers (blue dotted line) and the model
with two households differing only in the values of risk-aversion (red solid line) on the set of model’s
endogenous variables. Relative risk aversion is expressed in level deviations from the steady-state,
while GDP growth is measured in log deviations relative to the impact period t,. i.e. lnYt+h −
lnYt, h = 1, 2, ..., 40 quarters.
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Table 1: List of commodity futures

Sector Commodities
Grains and Oilseeds Corn

Kansas Wheat
Oats
Soybean Meal
Soybean Oil
Soybeans
Wheat

Energy Crude Oil
Heating Oil

Livestock Feeder Cattle
Pork Bellies
Lean Hogs
Live Cattle

Metals Copper
Gold
Palladium
Platinum
Silver

Softs Cocoa
Coffee
Cotton
Sugar

Entries report the twenty two commodity futures categorized in five broad sectors (grains and oilseeds,
energy, livestock, metals and softs). These are used to construct the three Daskalaki et al. (2014)
commodity-specific factors (hedging pressure, momentum and basis factors).
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Table 2: Predicting U.S. REA with U.S. IRRA: One-month horizon

IPIt+1 NFPt+1 RSt+1 HSt+1 CFNAIt+1 ADSt+1

REAt 0.003 0.486* -0.336* -0.423* 0.301* 0.819*
(0.974) (0.000) (0.001) (0.000) (0.003) (0.000)
[0.875] [0.000] [0.000] [0.000] [0.001] [0.000]

IRRAt -0.133*** -0.131** -0.148 -0.253* -0.123*** -0.062***
(0.097) (0.002) (0.014) (0.000) (0.024) (0.153)
[0.075] [0.012] [0.107] [0.003] [0.060] [0.087]

TERMt 0.060 -0.169* -0.141 -0.107 -0.058 -0.010
(0.430) (0.001) (0.059) (0.096) (0.266) (0.742)
[0.564] [0.002] [0.133] [0.233] [0.333] [0.772]

DEFt -0.414* -0.264* -0.089 -0.012 -0.399* -0.061
(0.002) (0.001) (0.330) (0.894) (0.001) (0.365)
[0.003] [0.003] [0.576] [0.972] [0.005] [0.304]

TEDt 0.009 0.004 -0.239** -0.087 -0.024 -0.014
(0.931) (0.940) (0.018) (0.123) (0.743) (0.814)
[0.827] [0.835] [0.017] [0.343] [0.818] [0.742]

SMBt -0.052 -0.095** -0.146 0.055 -0.111 -0.026
(0.421) (0.060) (0.042) (0.314) (0.014) (0.370)
[0.585] [0.041] [0.130] [0.387] [0.100] [0.525]

HMLt -0.054 0.031 -0.036 0.057 -0.051 -0.005
(0.415) (0.499) (0.678) (0.282) (0.287) (0.858)
[0.652] [0.703] [0.930] [0.429] [0.747] [0.945]

BDIt 0.005 0.026 0.113*** 0.087 0.036 0.117*
(0.923) (0.443) (0.082) (0.214) (0.437) (0.000)
[0.925] [0.510] [0.088] [0.170] [0.380] [0.000]

FVt -0.098 -0.183* -0.031 -0.165*** -0.181* -0.056
(0.244) (0.007) (0.764) (0.013) (0.005) (0.131)
[0.270] [0.003] [0.640] [0.088] [0.002] [0.163]

HPt -0.019 -0.051 0.104 0.070 -0.022 0.035
(0.766) (0.176) (0.259) (0.182) (0.654) (0.298)
[0.885] [0.248] [0.137] [0.327] [0.965] [0.251]

MOMt 0.088 0.012 -0.066 0.015 0.036 -0.033
(0.257) (0.759) (0.238) (0.822) (0.457) (0.220)
[0.230] [0.776] [0.356] [0.840] [0.513] [0.272]

BASISt -0.057 -0.026 -0.002 -0.052 0.004 0.021
(0.374) (0.592) (0.979) (0.383) (0.934) (0.491)
[0.388] [0.527] [0.912] [0.399] [0.930] [0.504]

OIt 0.122 0.006 -0.012 0.037 0.073 0.047
(0.129) (0.902) (0.812) (0.536) (0.182) (0.045)
[0.109] [0.804] [0.760] [0.655] [0.243] [0.145]

R2 0.205 0.725 0.138 0.205 0.617 0.856

Entries report results from the in-sample estimated multiple predictor regressions for various U.S. real economic activity (REA)
proxies and for a one-month horizon. The REA proxies considered are: industrial production (IPI), non-farm payrolls (NFP),
retail sales (RS, proxied by real retail sales), housing starts (HS), the Chicago Fed National Activity Index (CFNAI) and the
Aruoba-Diebold-Scotti business conditions index (ADS). The multiple predictor model includes the lagged REA and implied
relative risk aversion (IRRA) as predictors and is augmented by a set of control variables: term spread (TERM), default spread
(DEF), TED spread (TED), Fama-French (1996) Small-Minus-Big factor (SMB), Fama-French (1996) High-Minus-Low factor
(HML), Baltic Dry Index (BDI), forward variance (FV), hedging pressure commodity factor (HP), momentum commodity factor
(MOM), basis commodity factor (BASIS), and commodities open interest (OI). To construct our IRRA measure, we estimate (3)
via the generalized-method-of-moments (GMM) with a 30-months rolling window. We report the standardized ordinary-least-
squares (OLS) coefficient estimates, Newey-West (within brackets) and IVX-Wald (within squared brackets) p-values of each one
of the predictors and the adjusted R2 for any given model. One, two and three asterisks denote rejection of the null hypothesis
of a zero coefficient based on the IVX-Wald test statistic at the 1%, 5% and 10% level, respectively. The sample spans July 1998
to August 2015.
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Table 3: Predicting U.S. REA with U.S. IRRA: Longer horizons

IPIt+h NFPt+h RSt+h HSt+h CFNAIt+h ADSt+h

Panel A: Three-months horizon
REAt 0.342 0.597* -0.275 -0.251 0.459* 0.606*

(0.001) (0.000) (0.021) (0.002) (0.000) (0.000)
[0.162] [0.000] [0.343] [0.439] [0.002] [0.000]

IRRAt -0.097 -0.120* -0.245** -0.401** -0.064 -0.050
(0.282) (0.021) (0.009) (0.000) (0.329) (0.474)
[0.169] [0.008] [0.022] [0.015] [0.729] [0.676]

TERMt 0.052 -0.094*** -0.145 -0.158 -0.025 -0.029
(0.500) (0.118) (0.128) (0.099) (0.689) (0.663)
[0.813] [0.062] [0.395] [0.179] [0.594] [0.325]

DEFt -0.210 -0.178** -0.201 -0.004 -0.104 0.022
(0.128) (0.105) (0.135) (0.974) (0.318) (0.866)
[0.468] [0.037] [0.192] [0.656] [0.772] [0.560]

TEDt -0.123 -0.115 -0.460* -0.359* -0.240* -0.310*
(0.185) (0.156) (0.005) (0.004) (0.003) (0.000)
[0.194] [0.280] [0.001] [0.000] [0.000] [0.000]

SMBt -0.054 -0.060*** -0.127 -0.044 -0.093 -0.102***
(0.383) (0.129) (0.206) (0.567) (0.106) (0.041)
[0.589] [0.054] [0.241] [0.420] [0.364] [0.073]

HMLt -0.023 -0.013 -0.141 -0.032*** -0.055 -0.037
(0.684) (0.753) (0.119) (0.649) (0.272) (0.389)
[0.808] [0.372] [0.213] [0.099] [0.781] [0.621]

BDIt 0.193* 0.086* 0.073** 0.111*** 0.162* 0.121***
(0.000) (0.024) (0.252) (0.210) (0.005) (0.014)
[0.000] [0.004] [0.048] [0.067] [0.004] [0.062]

FVt -0.086 -0.121** 0.129 -0.059 -0.063 0.048
(0.285) (0.141) (0.302) (0.584) (0.366) (0.483)
[0.331] [0.012] [0.232] [0.516] [0.478] [0.167]

HPt 0.003 0.003 0.023 0.026*** -0.020 0.012
(0.949) (0.938) (0.693) (0.664) (0.602) (0.729)
[0.988] [0.671] [0.929] [0.053] [0.871] [0.918]

MOMt -0.040 -0.007 -0.034*** -0.064*** -0.025 -0.081
(0.542) (0.866) (0.599) (0.399) (0.671) (0.115)
[0.353] [0.494] [0.065] [0.063] [0.611] [0.117]

BASISt 0.000 -0.015 -0.013 0.082 0.038 0.047
(0.993) (0.698) (0.789) (0.255) (0.421) (0.268)
[0.964] [0.472] [0.877] [0.105] [0.993] [0.788]

OIt 0.093 0.042 0.035 -0.013 0.034 0.055
(0.129) (0.315) (0.548) (0.800) (0.578) (0.231)
[0.526] [0.394] [0.918] [0.119] [0.931] [0.504]

R2 0.482 0.797 0.246 0.283 0.579 0.640
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Table 3 (Cont’d)

IPIt+h NFPt+h RSt+h HSt+h CFNAIt+h ADSt+h

Panel B: Six-months horizon
REAt 0.165 0.533 0.023 -0.324* 0.336 0.422

(0.289) (0.000) (0.852) (0.000) (0.002) (0.001)
[0.586] [0.187] [0.194] [0.009] [0.327] [0.339]

IRRAt -0.133 -0.156* -0.310*** -0.659* -0.122 -0.156
(0.279) (0.023) (0.006) (0.000) (0.302) (0.241)
[0.151] [0.002] [0.098] [0.000] [0.969] [0.304]

TERMt -0.003 -0.068** -0.133 -0.186 -0.06 -0.065
(0.977) (0.394) (0.214) (0.038) (0.519) (0.560)
[0.188] [0.022] [0.901] [0.121] [0.370] [0.129]

DEFt -0.144 -0.159 -0.078 -0.031 0.028 0.144
(0.336) (0.166) (0.502) (0.761) (0.801) (0.288)
[0.401] [0.297] [0.751] [0.919] [0.539] [0.436]

TEDt -0.396* -0.237* -0.531* -0.396* -0.461* -0.450*
(0.002) (0.015) (0.000) (0.001) (0.000) (0.000)
[0.000] [0.052] [0.000] [0.000] [0.000] [0.000]

SMBt -0.122** -0.097** -0.195 -0.068 -0.223 -0.208*
(0.116) (0.034) (0.001) (0.223) (0.000) (0.000)
[0.022] [0.022] [0.421] [0.874] [0.101] [0.006]

HMLt -0.050 -0.059 -0.208 -0.110 -0.129 -0.097
(0.429) (0.164) (0.003) (0.083) (0.043) (0.072)
[0.923] [0.741] [0.406] [0.288] [0.824] [0.896]

BDIt 0.125* 0.081 0.063 0.023 0.036 0.012
(0.013) (0.028) (0.114) (0.707) (0.472) (0.824)
[0.006] [0.133] [0.367] [0.785] [0.867] [0.623]

FVt 0.016 -0.122* 0.233* -0.087 0.087*** 0.129***
(0.877) (0.235) (0.095) (0.369) (0.321) (0.201)
[0.752] [0.001] [0.000] [0.602] [0.075] [0.086]

HPt 0.035 -0.012 -0.024 0.046 0.033 0.006
(0.522) (0.722) (0.592) (0.468) (0.608) (0.909)
[0.932] [0.568] [0.330] [0.648] [0.677] [0.567]

MOMt -0.050 -0.001 -0.076** -0.077 -0.144* -0.114**
(0.450) (0.98) (0.188) (0.173) (0.019) (0.109)
[0.453] [0.779] [0.019] [0.394] [0.002] [0.016]

BASISt -0.072 -0.03 -0.001 0.002 -0.021 -0.037
(0.143) (0.336) (0.982) (0.962) (0.634) (0.447)
[0.472] [0.698] [0.877] [0.509] [0.897] [0.733]

OIt 0.102 0.067 0.046 -0.017 0.041 0.036
(0.131) (0.119) (0.371) (0.709) (0.555) (0.442)
[0.400] [0.172] [0.312] [0.435] [0.672] [0.353]

R2 0.419 0.759 0.409 0.483 0.458 0.452
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Table 3 (Cont’d)

IPIt+h NFPt+h RSt+h HSt+h CFNAIt+h ADSt+h

Panel C: Nine-months horizon
REAt -0.160** 0.402 0.126 -0.244 0.218 0.156

(0.340) (0.018) (0.404) (0.004) (0.004) (0.132)
[0.022] [0.449] [0.942] [0.121] [0.564] [0.595]

IRRAt -0.227* -0.224*** -0.377*** -0.785* -0.194 -0.254
(0.146) (0.023) (0.007) (0.000) (0.204) (0.143)
[0.060] [0.068] [0.078] [0.000] [0.787] [0.950]

TERMt -0.069** -0.073 -0.096 -0.135** -0.017 -0.062
(0.612) (0.525) (0.406) (0.124) (0.897) (0.670)
[0.015] [0.184] [0.173] [0.010] [0.288] [0.186]

DEFt -0.207 -0.191 0.000 -0.022 0.103 0.154
(0.153) (0.103) (0.999) (0.815) (0.342) (0.202)
[0.169] [0.647] [0.841] [0.200] [0.325] [0.145]

TEDt -0.530* -0.308* -0.512* -0.353* -0.513* -0.538*
(0.000) (0.001) (0.000) (0.001) (0.002) (0.006)
[0.000] [0.001] [0.000] [0.000] [0.000] [0.000]

SMBt -0.219** -0.149*** -0.133 -0.058 -0.158 -0.156
(0.005) (0.008) (0.031) (0.233) (0.013) (0.015)
[0.015] [0.059] [0.449] [0.223] [0.740] [0.830]

HMLt -0.116 -0.104 -0.103 -0.092 -0.028 -0.046
(0.099) (0.060) (0.116) (0.097) (0.607) (0.362)
[0.916] [0.857] [0.966] [0.573] [0.522] [0.623]

BDIt 0.051 0.041 0.001 -0.067 -0.083 -0.115
(0.279) (0.308) (0.980) (0.191) (0.214) (0.080)
[0.584] [0.391] [0.432] [0.700] [0.484] [0.875]

FVt 0.031 -0.123* 0.271** -0.017 0.178*** 0.192**
(0.788) (0.284) (0.025) (0.829) (0.055) (0.032)
[0.358] [0.001] [0.017] [0.417] [0.051] [0.020]

HPt 0.014 -0.010 0.027** 0.058*** -0.068*** -0.053
(0.773) (0.797) (0.559) (0.317) (0.230) (0.367)
[0.231] [0.135] [0.016] [0.058] [0.071] [0.104]

MOMt -0.045 -0.016 -0.109** -0.068** -0.042** -0.042**
(0.508) (0.746) (0.048) (0.174) (0.508) (0.511)
[0.882] [0.207] [0.027] [0.016] [0.011] [0.010]

BASISt -0.088 -0.066 -0.125 -0.010 -0.154 -0.157
(0.095) (0.082) (0.019) (0.840) (0.022) (0.013)
[0.171] [0.691] [0.272] [0.750] [0.279] [0.440]

OIt 0.072 0.069 0.018 -0.001 0.028 0.075
(0.233) (0.143) (0.702) (0.984) (0.615) (0.093)
[0.579] [0.706] [0.706] [0.74] [0.953] [0.886]

R2 0.414 0.685 0.469 0.597 0.356 0.379
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Table 3 (Cont’d)

IPIt+h NFPt+h RSt+h HSt+h CFNAIt+h ADSt+h

Panel D: Twelve-months horizon
REAt -0.316** 0.368*** -0.070 -0.126 -0.044 0.000

(0.021) (0.016) (0.468) (0.114) (0.635) (0.999)
[0.021] [0.070] [0.700] [0.229] [0.282] [0.259]

IRRAt -0.327* -0.268** -0.470 -0.823* -0.294 -0.31
(0.066) (0.023) (0.001) (0.000) (0.078) (0.068)
[0.003] [0.041] [0.174] [0.000] [0.572] [0.967]

TERMt -0.144 -0.048 -0.115 -0.121 -0.039 -0.069
(0.354) (0.716) (0.326) (0.118) (0.779) (0.624)
[0.000] [0.946] [0.912] [0.549] [0.912] [0.615]

DEFt -0.185 -0.144 -0.019 0.054 0.111 0.243**
(0.167) (0.189) (0.872) (0.571) (0.328) (0.079)
[0.482] [0.274] [0.499] [0.113] [0.121] [0.038]

TEDt -0.539* -0.388* -0.587 -0.352** -0.511 -0.534
(0.000) (0.000) (0.000) (0.000) (0.014) (0.023)
[0.001] [0.000] [0.160] [0.023] [0.339] [0.182]

SMBt -0.239** -0.181 -0.096 -0.032 -0.092 -0.055
(0.002) (0.004) (0.145) (0.43) (0.217) (0.446)
[0.019] [0.229] [0.805] [0.597] [0.351] [0.279]

HMLt -0.122 -0.111 -0.107 -0.054 -0.032 0.002
(0.066) (0.056) (0.079) (0.185) (0.573) (0.969)
[0.750] [0.824] [0.878] [0.732] [0.609] [0.703]

BDIt -0.021 0.015 -0.026 -0.037 -0.069 -0.089
(0.685) (0.711) (0.525) (0.36) (0.271) (0.224)
[0.511] [0.605] [0.841] [0.344] [0.898] [0.526]

FVt 0.020 -0.111 0.234** 0.037 0.075 0.094
(0.862) (0.353) (0.037) (0.513) (0.448) (0.402)
[0.921] [0.862] [0.068] [0.582] [0.120] [0.894]

HPt -0.012 -0.024 -0.037 0.005 -0.091 -0.074
(0.813) (0.548) (0.519) (0.922) (0.23) (0.392)
[0.649] [0.927] [0.653] [0.757] [0.941] [0.985]

MOMt -0.073 -0.019*** -0.048 -0.014*** -0.006 -0.033
(0.269) (0.721) (0.392) (0.79) (0.929) (0.594)
[0.896] [0.095] [0.427] [0.066] [0.217] [0.171]

BASISt -0.115 -0.087 -0.090 -0.028 -0.095 -0.071
(0.037) (0.046) (0.101) (0.500) (0.138) (0.254)
[0.273] [0.478] [0.471] [0.614] [0.503] [0.957]

OIt 0.055 0.065 0.025 -0.008 0.01 -0.053
(0.314) (0.171) (0.604) (0.767) (0.888) (0.381)
[0.728] [0.359] [0.690] [0.195] [0.616] [0.622]

R2 0.460 0.645 0.532 0.720 0.320 0.351

Entries report results from the in-sample estimated multiple predictor regressions for various U.S. real economic activity (REA)
proxies and for a one-month horizon. The REA proxies considered are: industrial production (IPI), non-farm payrolls (NFP),
retail sales (RS, proxied by real retail sales), housing starts (HS), the Chicago Fed National Activity Index (CFNAI) and the
Aruoba-Diebold-Scotti business conditions index (ADS). The multiple predictor model includes the lagged REA and implied
relative risk aversion (IRRA) as predictors and is augmented by a set of control variables: term spread (TERM), default spread
(DEF), TED spread (TED), Fama-French (1996) Small-Minus-Big factor (SMB), Fama-French (1996) High-Minus-Low factor
(HML), Baltic Dry Index (BDI), forward variance (FV), hedging pressure commodity factor (HP), momentum commodity factor
(MOM), basis commodity factor (BASIS), and commodities open interest (OI). To construct our IRRA measure, we estimate (3)
via the generalized-method-of-moments (GMM) with a 30-months rolling window. We report the standardized ordinary-least-
squares (OLS) coefficient estimates, Newey-West (within brackets) and IVX-Wald (within squared brackets) p-values of each one
of the predictors and the adjusted R2 for any given model. One, two and three asterisks denote rejection of the null hypothesis
of a zero coefficient based on the IVX-Wald test statistic at the 1%, 5% and 10% level, respectively. The sample spans July 1998
to August 2015.
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Table 4: Out-of-sample predictability of REA

IPI NFP RS HS CFNAI ADS

Panel A: Out-of-sample R2 from predictive regressions

h = 1M 0.019 0.037 0.052 0.034 0.062 0.024

h = 3M 0.017 0.027 0.102 0.078 0.016 -0.033

h = 6M -0.057 0.014 0.167 0.363 0.021 -0.009

h = 9M -0.164 -0.042 0.164 0.572 -0.049 -0.042

h = 12M -0.239 -0.108 0.171 0.640 -0.092 -0.113

Panel B: Out-of-sample R2 from Kelly and Pruit (2015) three-pass regression filter

h = 1M 0.003 0.011 0.010 0.006 -0.012 0.013

h = 3M 0.005 0.016 0.011 0.038 0.010 0.013

h = 6M 0.010 0.016 0.026 0.067 0.017 0.018

h = 9M 0.014 0.019 0.032 0.101 0.028 0.028

h = 12M 0.018 0.022 0.042 0.097 0.030 0.016

Entries in Panel A report the out-of-sample R2 obtained from the predictive model in equation (5)
versus the benchmark model that considers only lagged REA and the control variables as predictors.
Entries in Panel B report the out-of-sample R2 obtained from Kelly and Pruit (2015) three-pass
regression filter in equation (9) applied to the set of variables consisting of IRRA and a large set of
135 macroeconomic variables compiled by McCracken and Ng (2015) versus the benchmark model
that is the Kelly and Pruit (2015) three-pass regression filter applied to the 135 McCracken and
Ng (2015) macroeconomic variables. For each REA proxy, we estimate equations (5) and (9) for
the full and benchmark models recursively by employing an expanding window; the first estimation
sample window spans July 1998 to September 2007. At each point in time, we form h = 1, 3, 6, 9, 12
months-ahead REA forecasts.
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Table 6: Model’s calibrated parameters and implied steady-state values

Panel A: Model’s calibrated parameters

Description Parameter Value
no habit model

Value
habit model

Source/Target

Discount factor β 0.99 0.99 1% interest rate
Capital depreciation rate δ 0.025 0.025 Yashiv (2016)
Elasticity of GDP to hours α 0.67 0.67 Labour share of income
Habits h − 0.6 Christiano et al. (2005)
Inverse Frisch elasticity φ 2 2 Chetty et al. (2012)
Disutility of labor χ 85.98 266.5 Hours worked N = 0.33
Coefficient of RRA γ 5.62 2.241 Average IRRA
Autocorr. RRA ρ 0.9686 0.893 Autocorr. IRRA
St. dev. RRA σ 0.062 0.118 st. dev. IRRA

Panel B: Implied steady state values
Definition Variable Value Value
Consumption C 0.76 0.76
Investment I 0.23 0.23
GDP Y 0.99 0.99
Hours worked (share) N 0.33 0.33
Real interest rate R 0.0101 0.0101
Investment/capital ratio I/K 0.025 0.025
Capital/output ratio K/Y 28.34 28.34

Entries report the model’s calibrated parameters and Implied steady-state values. Calibration is performed to the U.S. economy.
We assign the values for the parameters ρ, σ governing the stochastic process for γt, in equation (12) to match the mean,
autocorrelation and standard deviation of the RRAt series generated by simulating the model over 100,000 quarters with the
empirical mean, standard deviation and autocorrelation of the IRRA time series estimated in Section 3.
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Table 7: Predictive regressions using simulated data from the RBC model

REAt+3 REAt+6 REAt+9 REAt+12

Panel A: No-habits
RRAt -0.001* -0.001* -0.002* -0.003*

(0.000) (0.000) (0.000) (0.000)

[0.000] [0.000] [0.000] [0.000]

Panel B: Habits
RRAt -0.004* -0.008* -0.012* -0.016*

(0.000) (0.000) (0.000) (0.000)

[0.000] [0.000] [0.000] [0.000]

Entries report results from the predictive regression of output growth on RRA in equation (21).
The regression has been performed on 100,000 simulated observations for output and risk aversion
obtained by simulating the model presented in Section 6. Panels A and B report results when we
perform model simulations under the calibrated parameters reported in Table 6 for the no-habits and
habits case, respectively. We report the ordinary-least-squares (OLS) coefficient estimate, and Newey-
West (within brackets) and IVX-Wald (within squared brackets) p-values. One asterisk denotes
rejection of the null hypothesis of a zero coefficient on RRA based on the IVX-Wald test statistic at
a 1% significance level.

61


